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Abstract—In this paper, a quasi-multiple medium (QMM) [9]-[11]. In both the indirect and direct BEM, only surfaces of
method based on the direct boundary element method (BEM) is three-dimensional (3-D) objects are discretized, and a smaller
presented to extract the capacitance of three-dimensional (3-D) system of linear equations is obtained. The MEI technique can

very large scale integration interconnects with multiple dielectrics. : . .
QMM decomposes each dielectric layer into a few fictitious terminate the meshes very close to the object boundary and still

medium blocks, and generates an overall coefficient matrix with Preserves the sparsity of the finite-difference (FD) equations.
high sparsity. With the storage technique of a sparse blocked The geometry independent measured equation of invariance
matrix and iterative equation solver generalized minimal residual, (GIMEI) is proposed for the capacitance extraction of the
the QMM can greatly reduce the CPU time and memory usage ganerg| two-dimensional (2-D) and 3-D interconnects by using
of large-scale direct BEM computation. Numerical examples of free- G s f . v [8]. The MEI hod h
3-D multilayered and multiconductor structures cut from actual ree-space Green's function only [8]. The metho aSInOW
layout show the efficiency of the QMM method for capacitance been developed to on-surface level, where a surface meshis used
extraction. We also compared the QMM accelerated BEM with to keep the number of unknowns in minimum [18]. The semi-
geometry independent measured equation of invariance (GIMEI) - analytical approaches usually decompose the simulated region
and Zhu's overlapping domain decomposition method (ODDM). it sybregions and analyze them separately. Many subregions
The results show that the CPU time consumed by the above-men-_ . . .
tioned methods is on the same order, and the QMM method is with §|mple geometry can be analyzed.analytlcally, thus, the
superior to the others for fairly large and complex structures. domains that have to be analyzed numerically are reduced to the
While in memory usage, the QMM accelerated BEM is superior least. This dramatically reduces memory and computing time
to GIMEI, but inferior to ODDM. [10]. The overlapping domain decomposition method (ODDM)
Index Terms—Capacitance extraction, direct boundary in[10]is one of these approaches with high performance. In ad-
element method (BEM), quasi-multiple medium (QMM) method, dition, many extraction tools such as Avant!’s Raphael, Ansoft’s
three-dimensional (3-D) very large scale integration (VLSI) SpiceLink, and the Massachusetts Institute of Technology’s
interconnects. (MIT’s) FastCap have been available in practical use.
An interconnect capacitor, which exists in reality, is defined
|. INTRODUCTION in a finite region and described by the Laplace equation with

. . L .. the mixed boundary conditions [2]. It means that the finite Neu-
N VERY LARGE scale integration (VLSI) circuits, with y [2]

"y f device densi d Kina f mann boundary should be considered. In fact, several published
rapid increase of device density and working frequency, t ‘?%orithms are all based on the capacitor model with finite Neu-

electrical characteristics of interconnects are becoming more - boundaries [2], [5], [9]-[11]. For this capacitor model

important factors govern ing th_e C_iTC““ perfor_mance_s such fiie direct BEM is moée SL,Jitab|e to extract the capacitance ml’:t-
dela_ly, power consumption, reliability, etc. This has_ mcreas?r%( than the indirect BEM. This is because there are two vari-
the interest n efficient methods for calculating electrical paramiy, o of electrical potential and its normal derivative in the direct

eters of interconnects. oundary integral equation (BIE) [12], [13]. Compared with the

Since the mid-1990s, many efficient numerical metho mianalytical approaches proposed by Hetal. [9] and Zhu

have been proposed to calculate the capacitance matrix of m%e[rél_[m]' [11], the direct BEM can deal with more complicated

connects [1]-{11], [18]. They can be classified as the indireggD structure of the interconnects. In fact, the geometry that the
boundary element method (BEM) [1]-[4], direct BEM [5], Hed I ' e g y

61, th thod of th q i fi . M emianalytical approaches can deal with has some limitations
[7]’ 8e nl(; 0 g € mtlaak§u(;e ;-zqua |.ono| |.nveI1r|ance ( h@' However, the direct BEM generally leads to a nonsymmetric
[7]. [8], [18]. and several kinds of semianalytical approac efficient matrix and the matrix for a single dielectric region is

, . . _ dense. This causes a great deal of time and memory consump-
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applied the QMM accelerated BEM to actual 3-D interconneandg* is the derivative ofu* along the outward normal direc-
capacitance extraction. Numerical experiments of 3-D extramn of boundaryo(?;.
tion are designed to demonstrate the computational efficiencyEmploying constant quadrilateral elements and evaluating the
of our method. The results are in close agreement with thadieect BIE at collocation points, one for an element, the dis-
of SpiceLink, FastCap, or Raphael, but the computing time antktized BIEs for theth dielectric are obtained as follows:
memory size used by our method are at least ten times less than N, i N, i
those used by them. We also compared a QMM accelerated / * L= / * -
BEM with the ODDM in [10] and GIMEI in [8]. The results """ ; QoL | ; RO
show that our method is superior to them in CPU time, espe- L L
cially for fairly large and complex structures. While in memory k=1,....,N; (4)
usage, the QMM accelerated BEM is superior to the GIMEI, buthereN; is the number of the boundary elements in dielectric
inferior to the ODDM. i, andl’; is the jth element.

The remainder of this paper is organized as follows. Section Il
outlines the direct BEM and related formulas to calculate inte- Integration and Equation Solution
connect capacitance. The principle of the QMM method is pre-The evaluation of integrals in (4) is the most time-consuming
sented in Section Ill. In Section IV, some important aspects phrt of boundary element algorithms, particularly for 3-D anal-
the QMM accelerated BEM are discussed for actual 3-D capagsis [5], [17]. They can be classified as the singular integrals
itance extraction. The numerical results are presented in Sgad nonsingular integrals. When the source point is on the

tion V. Finally, we give conclusions in Section VI. same element where the integral is taken, ke= j in (4),
it is singular integral, otherwise it is nonsingular integral. For
II. DIRECT BEM FOR CAPACITANCE EXTRACTION WITH the singular integral, the analytical integral method adopting
MULTIPLE DIELECTRICS local polar coordinates is effective [16]. The Gauss—Legendre

integration scheme with adaptive determination of integration
. . . points is employed to calculate the nonsingular integral [5],
~ Foran interconnect capacitor wifii. conductors embedded 7 yowever, for the nearly singular integrals, when the
in M dielectric layers, an approach, setting fite conductor g rce point is close to the element where the integral is taken,

to 1V and the rest to 0 V, is used to determine the self aggl, orger of Gauss—Legendre integration is still very high. Thus,
coupling capacitances of thégh conductor. This procedure caneqycing the calculating time of the nearly singular integrals

be repeatedV. times to get the capacitance matrix [2]. IN §acomes very important for direct BEM computation.

setting of bias voltages, the conductor of 1 V is called the mastenr,, proposed a semianalytical method to deal with these nearly
conductor, and the others are called the environment conductg{ﬁgmar integrals. With application of the primitive function,

Within the 3-D domain of théth dielectric denoted b@;, the  165_p integral taken on a trapezoid element is converted into
el_ectrlcal potential: is gpverned by the Laplace equation withy oo qimensional Gauss—Legendre integration (see the Ap-
mixed boundary conditions pendix). Compared with the 2-D Gauss-Legendre integration,

A. Fundamental Formulation

V2 — @ + 02_“ @ -0 N i=1 M the number of integration points is reduced drastically so that
x> Oy* 922 ' Y higher computational speed and accuracy are achieved.
u= 18007 in T, After the integration, a matrix equation for each dielectric is
q= 8_u =0, onl, generated as follows:
" ) H . uw=G.q¢, i=1,...M )

whereT', is the Dirichlet boundary (surfaces of conductorsyvhereu’ is the column vector of electrical potential on the
whereu is known and determined by the bias voltage, &pd boundary of the dielectri¢, ¢' is the column vector of the
is the Neumann boundary (outer surfaces of dielectrics), whét@'mal electrical field intensity, anH* andG" are the corre-
the normal electrical field intensity is supposed to be zera. sponding coefficient matrixes, respectively. Both vectora‘of
stands for the unit vector outward normal to the boundary. @ndg‘ have an order ofV;.

Besidesy andq fulfill the compatibility equations along the ~Matrix equations (5) can be put together utilizing the compat-

interface of two adjacent dielectriesandb as follows: ibility equations (2). We then reorganize the equation system,
O Om. = —er - ¢ such that all unknown variables are collected in a left-hand side
€a - OUG[/OM, = —&p - Dup/Omy, > . o . . .
{ w, = (2) vector, \_/vh|!e a corr_espon_dlng r_|ght-hand-5|de vector is obtained
wherezs,, ande,, stand for the permittivities of dielectricandb. ?_)r/“rgglitllzlsymg matrix entries with the known values@andg.
With the fundamental solution* as the weighting function, the
Laplace equations in (1) are transformed into following direct Az = f. (6)
BIEs by the Green’s formula [13]
) The coefficient matrixA is a large nonsymmetric one for
Cslls + / ¢ udl’ = / u”qdl, i=L....,M (3) the3D problem. The Krylove sub-space iterative methods are
a9, a9, efficient to solve them. A preconditioned generalized minimal

whereu, is the electrical potential at source point, is acon- residual (GMRES) algorithm is used here [14]. After solution
stant dependent on the boundary geometry near to the gointf (6), the self-capacitances and coupling capacitances can be
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Fig. 1. (a) 2-D problem with two dielectrics. (b) Corresponding coefficient X Ox=
matrix, where the gray blocks denote nonzero entries.

Fig. 2. Single dielectric with a Cartesian coordinate system is cutthte

evaluated by the integral of the normal electrical-field intensit(y’ X @y x Q- fictitious mediums.
on the conductor surfaces [1], [5].
decomposition is considered to make the resulting BEM coeffi-
[ll. PRINCIPLE OF THEQMM METHOD cient matrix with much sparsity. Lastly, the technique of storing
the sparse matrix and iterative equation solver are used to ben-
efit from the matrix sparsity.

From (4), we can see that, in each discretized BIE, all dis-|t should be pointed out that the QMM method adds some
cretized variables are on the boundary elements of one dielec{[itknowns to the overall problem, which are introduced on the
region. Thus, there are direct interactions among the boundaggitional fictitious interfaces of QMMs. With suitable decom-
elements in the same dielectric, which result in nonzero coeffjpsition of dielectric regions, these unknowns would account for
cients in the overall equation. We call this the localization Cha&-iittie percentage of total unknowns since most boundary ele-
acter of the direct BEM. ments are located on conductor surfaces. Thus, compared with

In the linear system (6), the coefficient matxreflects the the conventional BEM, the nonzero entries of mattiare much
distribution of interactions among all boundary elements. féwer in the QMM method. Since the Krylove sub-space iter-
there is the direct interaction between two elements, NONZ&Y®/e methods are usua”y used in 3-D Capacitance extraction,
entries are formed by the integrals taken on one of the elemegiger nonzero matrix entries mean less memory usage and com-
with the source pOint on the other. OtherWise, when the Sourﬁﬁting time by using the technique of the Storing sparse matrix.
point and discrete variable are on the elements without direcdtual cases of 3-D capacitance extraction verified this analysis.
interaction, i.e., not involved in a same dielectric, zero entries

are formed in the matrixA. For a problem with multiple ¢ performance Analysis of QMM for Actual Capacitance
dielectrics, the localization of the direct BEM makes matiX gyiraction

sparse, from which we could benefit while storing and solving h hod h liedinth i ¢ |
the system of the algebraic equation (6). In Fig. 1, we show al e QMM method has been applied in the extraction of actua
typical capacitor with two dielectrics and the correspondin -D multilayered interconnect capacitance. Here, each dielec-

matrix A generated by the direct BEM, where the nonzer%ic layer is decomposed into a few fictitious medium blocks,
entries and location of discrete variables are indicated. the overall coefficient matrix becomes much sparser, and great

computational acceleration can be expected. The CPU time and
B. QMM Method memory usage of QMM for actual capacitance extraction will

The QMM method takes full advantage of the localizatiOReTir;}atlgtzijisUf(t)ilrlr?;v E;Sed in 3-D interconnect capacitance ex-
character of the direct BEM. A single dielectric with permit; b

- ) . - . traction with the direct BEM can be expressed as follows:
tivity ¢ is regarded as a composition €f fictitious medium
blocks, whose permittivities are all the same=aas shown in t = tyen + tool + Laux 7
Fig. 2. Thus, the problem with the single medium is transferred
into a problem with some fictitious mediums. Due to the lowheret,., is the time spent in generation of the coefficients
calization character, the dense coefficient matrix for the single (6), ¢<1 iS the time spent in solution of (6), arig,. stands
medium problem is converted into a sparse one for the probldan the time spent in other supplementary procedures, including
with multiple mediums. input of the structure data and partition of boundary elements.
With suitable decomposition of the single dielectric, the résenerally speaking, the sum tf.,, andt,,; accounts for over
sulting coefficient matrix4 will become one with much sparsity 90% of the total CPU time.
so that computational speed-up is available. With the storageOnly nonzero matrix entries need to be computed and stored,
technique of the sparse blocked matrix and iterative equatithus,
solvers such as the GMRES algorithm, the computing time and
memory usage for the original single medium problem will be tgen X Z (8)
greatly reduced. We call this the QMM method.
Therefore, the QMM method includes the following threavhere Z stands for the number of nonzero entries of matrix
main points. Firstly, a single dielectric is regarded as a compogi: In the phase of the equation solution, we use the Krylove
tion of some fictitious mediums. Secondly, a suitable strategy sfib-space iterative methods such as GMRES [14], in which the

A. Localization of Direct BEM
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main manipulation of each iteration is once matrix—vector muMM method. It should also be pointed out that the increase
tiplication. Thus, we have of memory usage would be possible in the case with unsuitable
b < Z -k ) QMM decomposition, v_vhere too many fictitious interfaces of
wherek stands for the number of iterations. QMMs caused a great increase of unknowns.
For 3-D capacitancg extraction, th_e cqefﬁcient matdixs IV. QMM A CCELERATEDBEM FORACTUAL INTERCONNECT
usually a nonsymmetric sparse ma't.rlx ywth a Iarge order, e.g., CAPACITANCE EXTRACTION
larger than 1000. A good preconditioning matrix should also
be selected for the GMRES algorithm to quicken convergence.n this section, we firstly give the algorithm description of
Properly organizing the discretized BIEs, the diagonal precofie QMM accelerated BEM. The strategy for decomposition of
ditioner can bring quick convergence to the GMRES solvetielectric layers and element partition is given later. Lastly, we
which will be discussed further in Section IV-D. In this casediscuss the organization of discretized BEM equations.
the number of iterationk is much less than the paramegin
(9). Therefore, the number of nonzero matrix entties very
significant for the total computing time. An interconnect capacitor cut from the real layout usually
If we ignore the influence of,,,« and assume thedoes not is a stratified structure, and has many conductors embedded
change much while using the QMM method, we will find outn multiple stratified dielectrics. In order to apply the QMM
that the fewer nonzero entries there are, the less CPU time wilethod to actual 3-D interconnect capacitance extraction, we
be taken. In formulation, the speed-up ratio of the BEM compoeed to decompose the original dielectric layers into some fic-
tation with QMM acceleration is expressed as titious medium blocks. We then use the direct BEM to calcu-
Rupeed_up =/t = 2/ 7' (10 late the capacitance with the new multidielectric structure. The

. major steps of our QMM accelerated algorithm are listed as fol-
whereZ andZ’ stand for the numbers of nonzero entries of m%w]s P Q 9

trix A in the BEM computation without QMM acceleration and
that with QMM acceleration, respectively. This expression re-

A. Algorithm Description

Step 1) Read in the data describing a 3-D interconnect ca-

veals that the ratio of number of nonzero matrix entries approx—Ste 5 psa‘;tglr;ment- artitioning aaos for each boundary sur-
imately equals to the speed-up ratio of the QMM method. Thus, P )face partitioning gap u ysu

when the QMM method is applied to actual 3-D capacitance ex-

traction, its efficiency is mainly determined by the reduction of

the nonzero matrix entries. )
In our implementation of BEM computation, the memory For :=1t0 M o

usage consists of two main parts. One is the memory needed . Decompose the ith dielectric into

to store the coefficient matrix, denoted bjem 4 and the other  ctitious mediums;

is used to store the orthogonal basis vectors in the GMRES al- For j

gorithm, denoted bjvlemy . With the technology of storing the  ConducterNumberinLayer[ ] ,
sparse matrix, we get If (the jth conductor inter-
' sect additional interfaces of fictitious
Memy < Z (11)

mediums)

which means thablem 4 is proportional to the number of the Decompose conductor j ac-
nonzero matrix entries. In the GMRES algorithm, a new orthog- cording to the decomposition of dielec-
onal basis vector is constructed in each iterative step. Thus, weric  4;

have Set containing relation-

ship of conductor blocks and fictitious

Step 3)

1to

Memy oc V- k (12)  medium blocks;
whereV is the number of all unknowns aridis the number Endlf
of iterations. Since double precision arithmetic is required for E I(Ejr::dFor

ndFor

only the work comprising the orthogonalization process [19],
we store the matri¥ in single precision and the basis vectors . . .
in double precision. This storing scheme of mixed precision re-Step 4) Organize medium blocks and conductors blocks into

sults in less memory storage than the wholly double precision new object lists. -
version, while high computational accuracy is preserved [19]. Step 5) Partl'Flon all boundary surfaces of the new multidi-
Using the QMM method)em 4 is reduced by the same ratio electric structure.

with the reduction of nonzero matrix entries. On the other hand,Step 6) Calculate integrals in (4) and form (6).

Memy is increased because more unknowns are involved. UsuStep 7) Solve (6) with the preconditioned GMRES and
ally Mem 4 is much larger thaiviem . Thus, if the unknowns output the capacitance results.

are not increased much, the total memory usage will be re- . , )

duced while using the QMM method. This is verified by acB- Decomposition of Dielectrics

tual examples of 3-D capacitance extraction, for which severalln order to decrease the additional efforts brought by the

times of reduction in memory could be found while using th©@ MM decomposition, we adopt a simple strategy. Since every
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Fig. 4. Boundary element partition of one layer interface in the capacitor
shown in Fig. 3.

Master Conductor

master conductor, generally is the largest in the simulated
region. Besides, the electrical-field intensity at boundary
points near the master conductor is also larger. Thus, for each
mother element to be partitioned, the mesh number along two
directions should be deferent according to its type, position,
dielectric layer is cuboid, and each surface of it parallels to oBze, etc. The larger the electrical field intensity on a mother
of the three coordinate planes in the 3-D Cartesian coordingi@ment, the more densely it should be partitioned.
system, we use two groups of planes parallel to Ye~Z- For the additional fictitious surfaces introduced by the QMM,
and ZO X -planes, respectively, to cut all dielectric layers intgve also use different partition density according to the above
pieces (Fig. 3). Thus, in the top view of the 3-D interconneefectrostatic analysis. For each dielectric layer, the partition den-
capacitor, each original dielectric is decomposed into an arrgyy of fictitious surfaces is different. In the dielectric layer con-
of m x n fictitious medium blocks. We callf, n) the QMM  taining the master conductor, fictitious surfaces are partitioned
cutting number. more densely. While in the dielectric layers far from the master
The conductor distribution of actual 3-D interconnect capagayer, the partition density can be much less.
itor differs in thousands of ways, and the cutting position is |n the QMM accelerated BEM, the interface of the dielectric
not as important as the numb@rof fictitious mediums for the |ayer is cutinto small pieces, and some fictitious surfaces (which
QMM’s efficiency. Thus, a strategy of proportional-spacing cuinay be surfaces with holes) are produced. Thus, the partition of
ting is adopted, i.emn — 1 fictitious planes perpendicular to thethe boundary element becomes more complex than that without
X-axis andn — 1 fictitious planes perpendicular to thé-axis QMM accelerating. In Fig. 4, the partition of the bottom surface
cut the dielectrics uniformly. In Fig. 3, we show a five-layeredf the master dielectric layer in Fig. 3 is shown. This complex
interconnect capacitor to which a>8 2 QMM cutting is per- element partition of nonuniform density brings much difficulty
formed. to the more detailed discussion about the influence of the QMM
Now, every dielectric layer is decomposed iiffo= m X n cutting number on computing time.
fictitious medium blocks. Neither of little value and great value
of @ can bring the best speed-up of QMM computation. Mod. Organization of the Coefficient Matrix
grate values.ofn ar!d” should be chosen. Here, an empir- Organization of the coefficient matrid in multidielectric
ical formula is obtained fr_om a great _deal of cglcu_lanon .f EM computation involves the sorting order of unknowns and
actual interconnect capacitors according to their dlmenS|0|%

o . . . durce points and the storage structure. The order of unknowns
Emdmg away .to dynamically determlnethe thlmal QMM Cut('jetermines the arrangement of matrix columns, whereas the
ting number will be explored and discussed in the future.

order of source points determines the arrangement of matrix
. rows. We make the order of source points consistent with that
C. Boundary Element Partition of unknowns so that the diagonal entries of the matrix are
In applications of the BEM, the partition of boundary eleebtained by the singular integrals. Since the singular integral
ments is very important. It affects both speed and accuracyrebults in a nonzero entry with larger absolute value, the
BEM computation. In this paper, we adopt a strategy of nonurdiagonal preconditioner can bring quick convergence to the
form density partitioning. Thus, we partition the boundaries intBMRES solver.
fewer elements without loss of accuracy. How to arrange the unknowns or source points, which de-
There are two kinds of boundary surfaces in the actual itermines the distribution of nonzero entries in the matix
terconnect structure. Some surfaces can be treated as trapeoudry important for the QMM accelerated BEM. Using the
planes without holes, and the other can be treated as planes WitMM method, the regions of dielectrics are at least several
some polygon holes. Using the scan-line algorithm, a surfaiiees more than the original structure without fictitious cutting.
with holes can be further treated as a composition of smalleor example, a three-dielectric capacitor contains 12 dielectric
trapezoids [15]. Hence, both kinds of boundary surfaces consisgions, while 2x 2 QMM cutting is applied. If the unknowns
of the trapezoids, which are called mother elements and needvere arranged without serious consideration, the nonzero en-
be further divided into the boundary elements. tries would disperse in the coefficient matrix. Also, the nonzero
According to the electrostatic analysis, the electrical-fielohatrix blocks would increase much faster than the dielectric re-
intensity on boundary surfaces of conductors, especially th®ns. This would cause a lot of additional CPU time spent on

Fig. 3. Typical 3-D interconnect capacitor with five dielectrics is cut inte 3
2 structures.
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Fig. 5. Matrix expression of the unknown order.

switching manipulation among matrix blocks and locating of
nonzero entries in each matrix—vector multiplication. The effi-
ciency of the QMM method would be weakened.

The arrangement of unknowns in the multiregional BEM
computation is discussed in [5] and [12] for the direct equa-
tion solver. With reference to them, we propose a matrix
expression of the unknown order suitable for any complex
multiple-medium structure. By this arrangement, the number of (®)
nonzero blocks is deceased to the least, and their distribution is o _ _ _ _
so regular that an efficient storage structure can be easily fOLJ;¢0 I%m '%'S't:ri'gf'tl'ogn%f EE;’ ol dirglaeté't’r‘ice';t;ﬁ;';?& gpﬁ?&“ﬁogﬁﬁcmc
to save the additional CPU time. cutting.

The matrix expression of the unknown order is introduced
below. For theith dielectric region, unknowns in discretized

Pos. Info. Pos. Info. Pos. Info.

BIEs can be classified into the following three types: ¥
Rowl]| | Data Data Data

1) u on the Dirichlet boundary ang on the Neumann Length
boundary, denoted by”’ Row 2 , Pos. Info. || Pos. Info.

2) u on the dielectric interface, denoted hy; (the jth di- M ';:“gt: Data Data MAT_BLOCK
electric shares an interface with dielectije . Length|™\_[Pos. Tnfo. | [Pos. Tnfo. | [Fos. Tnfo.

3) ¢ on dielectric interface, denoted lgy; (the meaning of . Data Data Data
j is the same as that in 2). : [41—>|

. . terface Num+1
due to the compatibility ofi andq along interfaces [see (2)], perface _Tam

u;; andu;; can be represented only by; (i < j), While ¢i;;  Fig 7. storing structure of the coefficient matrix.
andg;; can be represented lgy; (¢ > j) (¢ > j). The order of

unknowns follows the rules below, and is expressed by a matrix, ) o ) ]
as shown in Fig. 5. nonzero blocks in the coefficient matrix. According to the

) _regular distribution of nonzero matrix entries, a length-varied
1) All possibleM x M types of unknowns are arranged inh_y 4rray is designed to store the coefficient matrix (Fig. 7).
anM x M matrix (M is the number of dielectric regions). ¢ has 1/ rows, and the cells in théth row are one more than
2) Entries on the main diagonal are of the typavhile en- o \umper of interfaces related to dielectricEach cell is a
tries in upper triangle are of typeand lower triangle are \ a1 | OCK structure, which includes a 2-D array to store a
of typeq. _ _ _nonzero matrix block and its position information. Experiments
3) The subscript of each matrix entry is the same with i, 65 that our organization of the coefficient matrix effectively
row—column position. reduces the additional manipulations in the equation solution
4) From left to right in the first row, and so on, row by rowg, o\ accelerated BEM computation, and ensures the
(i-e., follow the arrow lines), we get the order of all unygay jinear relationship between the CPU time spent with the
knowns. equation solution and the number of nonzero matrix entries.

Using this order of unknowns and the corresponding order
of source points, the coefficient matrik for the two-dielectric
problem in Fig. 1 is shown in Fig. 6(a), where the nonzero In this section, the QMM accelerated BEM is used to analyze
entries are distributed more regularly than that in Fig. 1(b§everal 3-D structures. The results are compared with those in
Fig. 6(b) shows the nonzero block distribution for a three-dj8] and [10]. Lastly, three large 3-D cases cut from real design
electric capacitor applied2 2 QMM cutting, under our matrix are used to depict the speed-up ability of the QMM method,
organization. In this case, there are 50 nonzero blocks afteénose computational results are compared with Raphael. In our
merging. While by another arrangement, the number would BEM programs, the stopping criteria of the GMRES is set to be
404. It could be proven that our method produces the fewds0x 1073.

V. NUMERICAL RESULTS
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each conductor is & 1 (unitin micrometers). Counted from the
bottom, the thickness of every layeris 1, 1, 1, 1, 1, and 2 (unit
in micrometers), the relative permittivities of the dielectrics are
2,4, 4,4, 6, and 6. Other geometrical parameters are shown in
Fig. 10.

The capacitance matrices calculated by the SpiceLink,
ODDM, and our method are shown in Table Ill. The results
of first two methods are provided by [10]. The discrepancy
between the results obtained with SpiceLink and our method is
within 5% (except that fo’ss is approximately 5.8%). In the

Fig. 8. 1x 1 cross over a ground plane. QMM accelerated BEM, 3« 3 QMM cutting is applied. Our
BEM program is run twice with two settings of bias voltages to
A. Series of 1Ix 1 Crossover getthe capacitance matrix. There are 1805 and 1811 discretized

_ Lo boundary elements, respectively, in the two calculations. In the
The structure is gotten from [8] and shown in Fig. 8, where &,ngnare workstation 20, the CPU time and memory size used
1 x 1 cross is immersed in five dielectric layers with a groung

: i these algorithms are also shown in Table Ill. From it, we
plane at the very bottom of the structure. The height of €agl, see that the computation resources used by SpiceLink are

dielectric layer is Jum. Each metal line has the width ofin, 55t ten times those used by the QMM accelerated BEM. The

and the two lines have the same lengtim. They are also both ~p|; time consumed by the ODDM and our method is on the

overlapped in the middle of the other line. The lower metal ?ame order, and the memory used by our method is about five

numbered one, while the higher is numbered two. The dielectm:nes that used by the ODDM.
relative permittivities are all the same. It is worth noting that, in

[8], the dielectric pel’mlttIVIty given for this structure, i.e., 3.9, ISC Four Conductor Crossover Above Two Bends Embedded in
impossible. By calculating the structures with FastCap [1] agbven Dielectric Layers

Raphael, it is found that the permittivity should be 1.0, not 3.9. The structure is shown in Fig. 11. The size of every straight

With the line lengthz taking the value of 4, 5, 7, and 10,,. .
lineis 1x 1 x 13, the gap between conductors 3 and 4, as well
the structures are computed by GIMEI, FastCap, Raphaeé, conductors 5 and 6, is 3. The distance between the straight
and the QMM accelerated BEM. The results of the GIM ! ' 9

are obtained from [8]. Since, at the present, our method ine and the Neumann boundary is 4. The size of the cross sec-

. - “on of every bend is x 1, other geometric parameters of the
only handle problem with a finite Neumann boundary, four R .
. uﬁ nds are shown in Fig. 12. Counted from the bottom, the thick-
Neumann boundaries are added far around the crossover while . . .
ness of every dielectric layeris 1,1, 2,1, 1, 1, and 1. All length

using the QMM accelerated BEM to compute the structures. : . . .
. . 2 - Barameters above are in unit of micrometers. The relative per-
The simulated region defined by the finite Neumann bound-

aries has a length of 30m and a width of 30um, and the mittivity of every layer is 2, 3, 3, 4 4,5, and .5'
. ) . \We have calculated the capacitance matrix by the QMM ac-
crossover is placed at its center. This makes the accurate valu

of capacitance close to that in the infinite region [2], whic eferated BEM, and the corresponding results of SpiceLink and

is handled by the GIMEI. In order to get the capacitancteeODDNI are prqwded by [10].Only.the diagonal entr!es ofthe
i . . _capacitance matrices are presented in Table IV. The discrepancy
matrix, the program of the QMM accelerated BEM is run twicé : . S
. . . .. ~among the results obtained with three methods is within 2%. In
with two settings of bias voltages. A 8 3 QMM cutting is

applied here. Table | shows the results of capacitafeCss the QMM accelerated BEM, 8 3 cutting is performed, and the

computed by different methods. The discrepancy between {%%)gram is run six times with different settings of bias voltages.

; : L ere are boundary elements from 2277 to 2575 in these six
results obtained with our method and other methods is Wlthclzrc])mputations. In the SunSparc workstation 20, the CPU time

5%. In a SunSparc workstation 20, the CPU time and memot . .
size used by the GIMEI, FastCap, and QMM accelerated BEﬁd memory size use_d by these methpds are .shown' in Table IV.
’ ! erefore, the CPU time used by SpiceLink is 20 times more

are show_n in Table Il (since the computing environment Flan that used by the QMM accelerated BEM. The CPU time
Raphael is different, the data of Raphael are not listed). Tcgnsumed by the ODDM is about two times that consumed b
CPU time consumed by the GIMEI and our method is on thoeu method y g

same order, and the memories used by the GIMEI are abou omparing the CPU time and memory size listed in Table IlI

six times more. With length increased from four to ten, the ; :
A . . —and IV, we find that, when the interconnect structure becomes
computing time of the GIMEI increases more than two times,

whereas that of the QMM accelerated BEM increases only 30%2)mpllcated with embedded conductors increased from two

or so. The QMM accelerated BEM uses an order of magnitua% six, the computing time of the ODDM increases by ap-

of less computing time and memory usade than EastCa proximately nine times, whereas that of the QMM accelerated
puting y 9 P- BEM only increases by three times. The time consumed by our

method is less than that by the ODDM for the more complicated
example. Therefore, the QMM accelerated BEM is superior
The structure is shown in Fig. 9 and the top view of thteo the ODDM in CPU time, especially for fairly large and
layer with a straight line and the layer with a bend is shown itomplex structures. In both Table Ill and IV, the memory used
Fig. 10(a) and (b), respectively. The size of the cross sectiontyf the QMM is larger than that used by the ODDM. This is

B. 3-D Interconnect with One Straight Line Over One Bend
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TABLE |
CAPACITANCE MATRIX CALCULATED BY THE GIMEI, FASTCAP, RAPHAEL, AND OUR METHOD (IN ATTOFARADS)
Conductor Cu Cn
Lengthz GIMEI FastCap Raphael QMM GIMEI FastCap Raphael QMM
4 230 226 2322 221.1 180.6 176 181.5 1764
5 260 265 272.1 2579 203.5 205 2084  202.5
7 348.7 3414 348.8  333.1 260.1 253.7 258.6 2519
10 440.3 451.6 460.2  441.7 326.8 3242 329.2 326.6
TABLE I
COMPARISON OFCPU TIME AND MEMORY USAGE FOR THEGIMEI, FASTCAP, AND OUR METHOD
Conductor CPU time (s) Memory (MB)
Lengthz GIMEI FastCap QMM GIMEl=r, . GIMEI FastCap QMM GIME(+m,
4 2.8 24.37 498 0.56 3.5 22 0.68 5.1
5 323 2606 5.34 0.60 37 24.5 0.68 54
7 6.5 65.62  5.61 1.12 5.6 60 0.72 7.8
10 9.16 9324 6.52 1.40 6.5 78 0.90 7.2

Ground plane

—

/ X Ao A_ //
[ L=y 2
1
X Fig.11. Four crossovers above two bends embedded in seven dielectric layers.
Ground plane
ty
Fig. 9. One straight line over one bend. b
y ‘}J/'
of b
S2
S2 Si .
)
—rle—>|
l 07s1 52 4
SII h1
> » Fig. 12. Top view of the layer with bends in Fig. kil= b = 13,51 = 3.5,
0 a x0T a x  s2=3
(a) (b)
TABLE IV
Fig. 10. Top view of the layers with conductors in Fig.®.= 9, b = 8. DIAGONAL ENTRIES OF THECAPACITANCE MATRIES (IN PICOFARADS)
(a) Layer with a straight line$1 = 3, S2 = 5. (b) Layer with a bendh1 = = =
h2 = 3.5. i ime emory
Cll C22 C33 C44 CJ5 C66 (S) (MB)
SpiceLink 0.669 1.29 1.6 1.54 2.53 253 1327 75.9
TABLE I
CAPACITANCE MATRIX CALCULATED BY THE SPICELINK, ODDM, AND OUR ODDM 068 129 157 1.52 2.54 254 122 27
METHOD (IN PICOFARADS) Our method 0.682 131 1.6 1.54 253 253 584 3.80
Ti M
Cu Cp Cu  Cx  Element E?;e (i;[né))ry TABLE V
P COMPARISION BETWEEN THEBEM WITHOUT THE QMM AND THE BEM WITH
SpiceLink 0779 -026 -026 138 N-A. 343 391 THE QMM FOR THENUMBER OF NONZEROMATRIX ENTRIES AND ITERATIONS
ODDM 0.812 -0.259 -0.259 1.32 N.A. 12 0.588
Our method 0.813 -0.259 -0.258 1.46 1805/1811 13.9 2.60 BEM without QMM BEM with QMM Ratio of
Non-zero entry Iteration Non-zero entry Iteration non-zero
. . . 1 13423574 24 1658476 26 8.1
because that larger scale system of linear equations is genera
. . 2 18968008 25 3250417 27 5.8
in the BEM computation. However, the memory used by the
3 26479962 22 3275984 24 8.1

QMM accelerated BEM is becoming very close to that usec
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TABLE VI
COMPARISION OFRAPHAEL, THE BEM WITHOUT THE QMM, AND THE BEM WITH THE QMM

Raphael BEM without QMM BEM with QMM Speed-up
. . . Error to Non- Rap-
Cap. Time  Element Mem Cap. Time Element Mem Cap. Time Raphael(%) QMM hael
1 20.19 560 5551 542 19.52 138.9 6669  13.0 19.69 18.1 0.9 77 31
2 3138 828 7382 76.5 30.97 1914 8963 214 3124 355 0.9 54 23
3 27.09 1603 8713 106 26.61 272.5 9928 220 27.12 35.1 1.9 78 46
Cap. —— Self capacitance of the master conductor (unit in pF).
Time —— CPU time (unit in second).
Mem —— Memory usage (unit in Mbyte).
by the ODDM for a larger and more complicated interconnect Y“ Pi(X4,y2,22)  Pi(X3,y2,22)
structure, as shown in Table IV.
D. 3-D Structures Cut from a Real Design
We have also compared the BEM without QMM accelera- Pi(x1y1,21) Py(x2,y1,21)
tion and the BEM with QMM acceleration for three large 3-D
examples using five metal-layer technology. All these examples 7z 0 X

have conductors distributed from layers 2 to 5, and include many
crossovers and bends. The first example has 34 pieces of con-

ductors, while the second and the third have 53 and 142 piefgs 13. Trapezoid elemerft, 2, P, P, whose hemines are parallel to the

of conductors, respectively. Both BEMs, with QMM acceler-
ation or without QMM acceleration, have the same program
implementation. By assigning the QMM cutting number to be
(1, 1), we attain the conventional BEM, i.e., the BEM without
QMM acceleration. The cutting numbers in the QMM acceler- 2
ated BEM are different for the three examples. They are (3, 7),
(3,5), and (6, 3), respectively. In these real structures, the master
conductors are specified. Thus, only one setting of bias voltages
is used for each example. In Table V, the number of nonzero co-
efficient matrix entries and the GMRES iteration number are
listed for these cases, whether or not using QMM acceleration.
This experiment is carried out on a Sun Ultra E450 and the 3
computational results are listed in Table VI. The corresponding
results of Raphael are also listed in Table VI. From the data, we
can see that the BEM with the QMM is about six times faster
than that without the QMM. The speed-up ratios of the BEM
with the QMM to the BEM without the QMM are close to the
ratios of nonzero entries in Table V. Thus, the analysis in Sec-
tion 111-C is verified. It also can be found that the BEM with the
QMM uses approximately 1/5-1/3 of memory than the BEM
without the QMM uses. Though the boundary elements and

It makes the coefficient matrid become a very sparse
matrix so that great computational speed-up is available.

) Since the techniques of storing a sparse matrix and iter-

ative equation solution are usually used in 3-D capaci-
tance extraction, the reduction of nonzero matrix entries,
brought by the QMM, results in less memory for storing
the coefficient matrix. Therefore, the QMM accelerated
BEM usually reduce the memory usage for actual capac-
itance extraction.

) The semianalytical method of boundary integration, suit-

able for planar structures, and the efficient organization
of the coefficient matrix, etc., are used to make the di-
rect BEM more effective to extracting 3-D interconnect
capacitance.

) The QMM accelerated BEM inherits the advantages of

the BEM, and improves it to fit the 3-D computation. The
BEM with QMM acceleration is very suitable for an ac-

tual 3-D capacitor model with finite Neumann boundaries
and complex geometry.

GMRES iteration number increases while using QMM acceler- Numerical results show that the computational sources used
ation, the QMM method greatly reduces CPU time and memoW SpiceLink and Raphael are both at least ten times more
usage of BEM computation. The BEM with QMM acceleratiofihan those used by our method. The comparisons between our
has a large speed-up ratio to Raphael, which is over 20 for thégthod and the GIMEL in [8] and the ODDM in [10] show

three examples, and the discrepancies of capacitance betw®@hthe computing time of three methods is about on the same
both methods are within 2%. order. While processing an interconnect capacitor containing

more conductors or with more complicated geometry, the
QMM accelerated BEM would outperform the GIMEI and
ODDM in CPU time. In memory usage, the QMM accelerated
In this paper, the direct BEM has been accelerated by a ng®M is superior to the GIMEI, but inferior to the ODDM.
method called the QMM and other effective techniques to com-|n the implementation of the QMM accelerated BEM, the pro-
pute actual 3-D interconnect capacitance. The QMM accelgfram will run NV, times to get the total capacitance matrix, where
ated BEM has the following attractive features. N, is the number of conductors. This may be improved by using
1) The QMM involves a simple idea of decomposing eacin idea of multiple-master computation, which would further
dielectric layer to a number of fictitious medium blocksreduce the CPU time of our method. Besides, a more effective

VI. CONCLUSIONS
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Y2 X2 _$s+\/(X2_$S)2+(y_ys)2+(z_zs)2
Li=V1+K? [ In d A4
- /yl [Xl _$s+\/(X1 _$S)2+(y_ys)2+(z_zs)2] Y ( )

Y2 Xo —
Iq:\/1+K2/ { 2~ T

v | [y =)+ (2= 2)2 | V(X2 —2:)2 + (y — ys)2 + (2 — 2,)2
’ X o }dy
[y =)+ (2= 22| V(X1 =22+ (y — )2+ (2 — 2:)2 |

(A.5)

decomposition strategy of the QMM would also be consider&dD interconnect capacitance extraction, most of the boundary

in a future work. elements are the rectangle element perpendicular to the coordi-
nate axis. For this case, i.€(, = 0, X1 = z1, and X, = zo,
APPENDIX the analytical integral formula can be further deducted. If

ofnany integration points are required for a nonsingular integral,
1e analytical formula can be used to calculate it, otherwise
e semianalytical formula is used. Our semianalytical and

The process of a VLSI circuit makes the regularity of int
connect geometry. After discretization, the boundary is co
posed of rectangle, parallelogram, trapezoid, and triangle eli
ments. For these shapes of element, a semianalytical met@
willimprove the speed and accuracy of the nonsingular integr

Regarding a rectangle, parallelogram, and triangle as spea
trapezoids, the trapezoid becomes the only shape of the dis-
cretized boundary elements in the actual interconnect capacitor.
Generally, the hemlines of the trapezoid are parallel to one coor-The authors would like to thank Dr. J. Hou, China Integrated
dinate axis, without loss of generality, assume that X isxis, Circuit Design Center, Beijing, China, Prof. X. Hong, Tsinghua
as shown in Fig. 13. University, Beijing, China, and T. Lu, Tsinghua University, for

For the 2-D integral taken on the trapezoid element in Fig. I8any helpful discussions. The authors are also grateful to Dr.

W. Sun, Ultima Interconnect Technology Inc., for his helpful
I= ./Fj f(@,y, z)dL. (A1) |etters and review of the draft of this paper.

Making a transformation by adopting andY as local coordi-

alytical integral method not only improves the accuracy of
€ nonsingular integrals, but also increases the computational

%?ed of them.
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